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Todays readings

I Chapter 2, sections 2.3.2 to 2.6 (inclusive)

I Chapter 3, up to and including section 3.3 (p.19-29)



Identify that term!

Consider directed paths from A to C

I Source =

A

I Sink = C

I Trek = A→ D → C and A→ E → C

A trek between distinct vertices A and B is
an unordered pair of directed paths
between A and B that have the same
source, and intersect only at the source.
One of the paths in a trek may be an
empty path
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Minimality

I If G is a directed acyclic graph over V and P a probability distribution over V,
< G ,P > satisfies the Minimality Condition if and only if for every proper
subgraph H of G with vertex set V, < H,P > does not satisfy the Markov
condition

I Minimality and the Markov condition are met if all of the edges in G are
necessary to fully describe the dependency structure in the joint density. I cannot
build a simplified version of the graph which also satisfies the markov condition

I If a distribution P(V satisfies the Markov and Minimality conditions for a directed
acyclic graph G, then G is a minimal I-map of P



2.3.2 Directed Independence Graphs (DIG)

I Almost equivalent way of representing conditional independence relations
I We can say that there is an ordering of vertices respected in the graph

I Edges point from lower ordered to higher ordered vertices

I The DAG G is a DIG of P(V ) for an ordering > of the vertices in G if an only if
A→ B occurs in G if A is conditionally dependent on B, conditioned on the set of
vertices V such that V 6= A and V > B.

I There should be an arrow from A to B only if they are dependent conditional on
anything ”downstream” of B

I Not equivalent when the probability distribution is not positive



2.3.3 Faithfulness

I Markov Con says nodes should be
independent of their non-parents and
non-descendants, given their parents

I A distribution may have other
independence relations besides those
given by Markov Con

I A might be independent of D - the
paths trough C and B might exactly
cancel one another out

I We assume this cannot be the case



2.3.3 Faithfulness

I If all and only the CI relations true in
P are entailed by the Markov Con
applied to G , P and G are faithful

I G is a perfect map of P

I P is a DAG-Isomorph of G



2.3.4 d-seperation

X and Y are d-seperated given W if and only if there is no undirected path U between
X and Y such that:

1. Every collider on U has a descendant in W
AND

2. No other vertex on U is in W

X and Y are d-connected if they are not d-seperated



2.3.4 d-seperation

Rule 1: X and Y are d-connected if there is an unblocked path between them

I A path is any sequence of edges, disregarding their direction

I A path is “unblocked” if it doesn’t pass through a collider, e.g. → U ←

Rule 2: X and Y are d-connected conditional on Q if there is a collider-free path
between X and Y that traverses no member of Q.

I If no such path exists, they are d-seperated by Q

Rule 3: If a collider is a member of the conditioning set Q, or has a descendant in
Q, then it no longer blocks any path that traces this collider
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2.3.4 d-seperation

X and Y are d-seperated given the empty set

Rule 1: X and Y are d-connected if there is an unblocked path between them



2.3.4 d-seperation

X and Y are d-connected given the set {S1,S2}

I Rule 2: X and Y are d-connected conditional on {S1,S2} if there is a collider-free
path between them that does not go through {S1,S2}

I Rule 3: If a collider is a member of {S1, S2} or has a descendant in {S1,S2}, then
it no longer blocks any path through it

I U and W are colliders, but since we condition on their children, they no longer block
any paths
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2.3.4 d-seperation

X and Y are d-seperated given the set {S1,S2,V }

I Rule 2: X and Y are d-connected conditional on {S1,S2,V } if there is a
collider-free path between them that does not go through {S1,S2,V }

I All newly-open paths between X and Y (through U and W ) still must go through
V . So conditioning additionally on V blocks these



2.3.5 Linear Structures

We can say our DAG G is a linear representation of representing an expanded graph G ′

over a superset V ′ and distribution P ′′(V )

I Every endogenous variable in V , has a unique error variable in V ′

I Each endogenous variable is a linear function of its parents in G ′

I In P ′′(V ) the correlation between exogenous variables in G ′ is zero P(V is the
marginal of P ′′(V ) over V

If G linearly represents P(V ) we say G ,P(V ) is a linear model with DAG G



2.4 Undirected Independence Graphs

I Another graphical representation of CI

I A and B are connected only if they are conditionally independent given \{A,B}
I In general the UIG is not the same as an undirected version of a DAG, but will be

a subgraph of this



2.5 Deterministic and Pseudoindeterministic Systems

I Related to the SEM representation/idea of models

I If C is uniquely determined by A and εc it is deterministic

I If we do not have εc and εd , but we think of our observed variables as embedded
in this deterministic graph, we can say the graph is pseudoindeterministic



Group Discussion: d-seperation

Two useful links for further reading on d-seperation

1. d-seperation without tears
I A more didactical description of d-seperation rules with graph examples

2. Endogenous Selection Bias: The Problem of Conditioning on a Collider Variable
I A nice sociology article giving lots of applied examples of colliders and the problem

of conditioning on them

http://bayes.cs.ucla.edu/BOOK-09/ch11-1-2-final.pdf
http://www.annualreviews.org/doi/10.1146/annurev-soc-071913-043455


Group Discussion: Conditioning on a collider

I We tend to think about conditioning on a third variable in a regression sense; for
example, we want to know the relationship between X and Y. In building a
regression model predicting Y from X, we add C as a predictor, thus estimating
the conditional relationship between X and Y, conditioned on C.

I More generally conditioning on a third variable entails estimating relationship
between X and Y at a particular value of C. Let C be gender, X be intelligence
and Y be income. Take it that we wanted to know the relationship between
intelligence and income; we conduct a survey asking about income and
intelligence, however we sample only males. Then, estimating the correlation
between income and intelligence in our dataset would amount to estimating the
relationship between intelligence and income conditional on gender being male.

I As such, if we wish to estimate the relationship between X and Y, and we sample
based on a variable C, which is itself caused by X and Y, then we will introduce
bias due to conditioning on a collider



Group Discussion: Example of collider conditioning

We can view an example of nonresponse bias (in our exmaple a MNAR mechanism)
as a problem of conditioning on a collider

Inc 

Pay 

Resp 

I Take it that we are interested in investigating
the influence of Income (Inc) on Child-Support
Payments (Pay) in divorced fathers

I Say we survey a sample of divorced fathers, but
not all of them respond. Let Resp= 0 for
non-responders, and Resp= 1 for responders.

I Suppose that in reality, fathers who are have a
higher income, and fathers who pay more child
support, are more likely to respond to the
survey.

I In this case when we estimate the relationship
between Inc and Pay in our sample, we will be
conditioning on Resp= 1, introducing bias



Group Discussion: Example of collider conditioning
We can view (at least certain instances) of nonresponse bias as a problem of
conditioning on a collider

Inc 

Pay 

Resp 

.55 

.3 

.55 

We can see this bias with a simple numerical
example

I For simplicity lets assume linearity and
continuous variables so we can use correlations

I Let’s say that the marginal correlation between
Income and Payment in the population (so the
true relationship) is rIP = .3. This is the
relationship without conditioning on a collider

I Let’s say we can express the effect of Inc on
Resp with the partial correlation of Inc and
Resp, conditional on Pay, rIR.P = .55, and vice
versa for Pay on Resp, rPR.I = .55

I These numbers are assigned to their
corresponding arrows in the DAG



Group Discussion: Example of collider conditioning

We can view (at least certain instances) of nonresponse bias as a problem of
conditioning on a collider

Inc 

Pay 

Resp 

.55 

.3 

.55 

-.1 

We can see this bias with a simple numerical
example

I When we condition on Resp, as we would do
in our sample, we find a small negative partial
correlation between Inc and Pay, rIP.R = −.1



Group Discussion: Example of collider conditioning

We can view (at least certain instances) of nonresponse bias as a problem of
conditioning on a collider

Inc 

Pay 

Resp 

.55 

.3 

.55 

-.1 

Marginal Correlation Matrix 1 0.3 0.6
0.3 1 0.6
0.6 0.6 1



Partial Correlation matrix

 1 −.094 0.55
−.094 1 0.55
0.55 0.55 1





Group Discussion: Example of collider conditioning

We can view (at least certain instances) of nonresponse bias as a problem of
conditioning on a collider

Inc 

Pay 

Resp 

.55 

.3 

.55 

-.1 

library("corpcor")

c12<-.3

c13<-.6

c23<-.6

m<-matrix(c(1,c12,c13,

c12,1,c23,

c13,c23,1),3,3,byrow=TRUE)

cor2pcor(m)


