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Abstract

The aim of this chapter is to: a) provide a broad didactical treatment of the

first-order stochastic differential equation model - also known as the continuous-time

(CT) first-order vector autoregressive (VAR(1)) model; and b) argue for and

illustrate the potential of this model for the study of psychological processes using

intensive longitudinal data. We begin by describing what the CT-VAR(1) model is,

and how it relates to the more commonly used discrete-time VAR(1) model.

Assuming no prior knowledge on the part of the reader, we introduce important

concepts for the analysis of dynamic systems, such as stability and fixed points. In

addition we examine why applied researchers should take a continuous-time

approach to psychological phenomena, focusing on both the practical and

conceptual benefits of this approach. Finally, we elucidate how researchers can

interpret CT models, describing the direct interpretation of CT model parameters as

well as tools such as impulse response functions, vector fields, and lagged-parameter

plots. To illustrate this methodology we re-analyse a single-subject

experience-sampling dataset with the R package ctsem; for didactical purposes, R

code for this analysis is included, and the dataset itself is publically available.
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A continuous time approach to intensive longitudinal data:

What, Why and How?

The increased availability of intensive longitudinal data – such as obtained

with ambulatory assessments, experience sampling, ecological momentary

assessments and electronic diaries – has opened up new opportunities for researchers

to investigate the dynamics of psychological processes, that is, the way psychological

variables evolve, vary and relate to one another over time (cf. Bolger & Laurenceau,

2013; Chow, Ferrer, & Hsieh, 2011; Hamaker, Dolan, & Molenaar, 2005). A useful

concept in this respect is that of people being dynamic systems whose current state

depends on their preceding states. For instance, we may be interested in the

relationship between momentary stress and anxiety. We can think of stress and

anxiety as each defining an axis in a two-dimensional space, and let the values of

stress and anxiety at each moment in time define a position in this space. Over

time, the point that represents a person’s momentary stress and anxiety, moves

through this two-dimensional space, and our goal is to understand the lawfulness

that underlie these movements.

There are two frameworks that can be used to describe such movements: 1)

the discrete time (DT) framework, in which the passage of time is treated in

discrete steps; and 2) the continuous time (CT) framework, in which time is viewed

as a continuous variable. Most psychological researchers are at least somewhat

familiar with the DT approach, as it is the basis of the vast majority of longitudinal

models used in the social sciences. In contrast, CT models have gained relatively

little attention in fields such as psychology: This is despite the fact that many
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psychological researchers have been advocating their use for a long time, claiming

that the CT approach overcomes practical and conceptual problems associated with

the DT approach (e.g., Boker, 2002; Chow et al., 2005; Oud & Delsing, 2010;

Voelkle, Oud, Davidov, & Schmidt, 2012). We believe there are two major hurdles

that hamper the adoption of the CT approach in psychological research. First, the

estimation of CT models typically requires the use of specialized software (cf. Chow,

Ferrer, & Nesselroade, 2007; Driver, Oud, & Voelkle, in press; Oravecz, Tuerlinckx,

& Vandekerckhove, 2016) or unconventional use of more common software (cf.

Boker, Deboeck, Edler, & Keel, 2010; Boker, Neale, & Rausch, 2004; Steele &

Ferrer, 2011). Second, the results from CT models are not easily understood, and

researchers may not know how to interpret and represent their findings.

Our goal in this chapter is twofold. First, we introduce readers to the

perspective of psychological processes as CT processes; we focus on the conceptual

reasons for which the CT perspective is extremely valuable in moving our

understanding of processes in the right direction. Second, we provide a didactical

description of how to interpret the results of a CT model, based on our analysis of

an empirical dataset. We examine the direct interpretation of model parameters,

examine different ways in which the dynamics described by the parameters can be

understood and visualised, and explain how these are related to one another

throughout. We will restrict our primary focus to the simplest DT and CT models,

that is, first-order (vector) autoregressive models and first-order differential

equations.

The organization of this chapter is as follows. First, we provide an overview of

the DT and CT models under consideration. Second, we discuss the practical and
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conceptual reasons researchers should adopt a CT modelling approach. Third, we

illustrate the use and interpretation of the CT model using a bivariate model

estimated from empirical data. Fourth, we conclude with a brief discussion of more

complex models which may be of interest to substantive researchers.

Two frameworks

The relationship between the DT and CT frameworks has been discussed

extensively by a variety of authors. Here, we briefly reiterate the main issues, as this

is vital to the subsequent discussion. For a more thorough treatment of this topic,

the reader is referred to Voelkle et al. (2012). We begin by presenting the first-order

vector auto-regressive model in DT, followed by the presentation of the first-order

differential equation in CT. Subsequently, we show how these models are connected,

and discuss certain properties which can be inferred from the parameters of the

model. For simplicity, and without loss of generalisation, we describe single-subject

DT and CT models, in terms of observed variables. Extensions for multiple-subject

data, and extensions for latent variables, in which the researchers can account for

measurement error by additionally specifying a measurement model, are readily

available (in the case of CT models, see for example Boker et al., 2004; Driver,

Voelkle, & Oud, 2017; Oravecz & Tuerlinckx, 2011).

The discrete time framework

DT models are those models for longitudinal data in which the passage of time

is accounted for only with regards to the order of observations. If the true

data-generating model for a process is a DT model, then the process only takes on

values at discrete moments in time (e.g., hours of sleep per day or monthly salary).
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Such models are typically applied to data that consist of some set of variables

measured repeatedly over time. These measurements typically show

auto-correlation, that is, serial dependencies between the observed values of these

variables at consecutive measurement occasions. We can model these serial

dependencies using (discrete-time) auto-regressive equations, which describe the

relationship between the values of variables observed at consecutive measurement

occasions.

The specific type of DT model that we will focus on in this chapter is the

first-order Vector Auto-Regressive (VAR(1)) model (cf. Hamilton, 1994). Given a

set of V variables of interest measured at N different occasions, the VAR(1)

describes the relationship between yτ , a V × 1 column vector of variables measured

at occasion τ (for τ = 2, . . . , N) and the values those same variables took on at the

preceding measurement occasion, the vector yτ−1. This model can be expressed as

yτ = c+ Φyτ−1 + ετ , (1)

where Φ represents a V × V matrix with autoregressive and cross-lagged coefficients

that regresses yτ on yτ−1.The V × 1 column vector ετ represents the

variable-specific random shocks or innovations at that occasion, which are normally

distributed with mean zero and a V × V variance-covariance matrix Ψ. Finally, c

represents a V × 1 column vector of intercepts.

In the case of a stationary process, the mean µ, and the variance-covariance

matrix of the variables yτ (generally denoted Σ), do not change over time.1 Then,

the vector µ represents the long-run expected values of the random variables,

E(yτ ), and is a function of the vector of intercepts and the matrix with lagged

regression coefficients, that is, µ = (I −Φ)−1c, where I is a V × V identity matrix
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(cf. Hamilton, 1994). In terms of a V -dimensional dynamical system of interest, µ

represents the equilibrium position of the system. By definition, τ is limited to

positive integers; that is, there is no .1th or 1.5th measurement occasion.

Both the single-subject and multilevel versions of the VAR(1) model have

frequently been used to analyze intensive longitudinal data of psychological

variables, including symptoms of psychopathology, such as mood- and affect-based

measures (Bringmann, Lemmens, Huibers, Borsboom, & Tuerlinckx, 2015;

Bringmann et al., 2016; Browne & Nesselroade, 2005; Moberly & Watkins, 2008;

Rovine & Walls, 2006). In these cases, the auto-regressive parameters φii are often

interpreted as reflecting the stability, inertia or carry-over of a particular affect or

behaviour (Koval, Kuppens, Allen, & Sheeber, 2012; Kuppens, Allen, & Sheeber,

2010; Kuppens et al., 2012). The cross-lagged effects (i.e., the off-diagonal elements

φij for i 6= j) quantify the lagged relationships, sometimes referred to as the

spill-over, between different variables in the model. These parameters are often

interpreted in substantive terms, either as predictive or Granger-causal relationships

between different aspects of affect or behaviour (Bringmann et al., 2013;

Gault-Sherman, 2012; Granger, 1969; Ichii, 1991; Watkins, Lei, & Canivez, 2007).

For example, if the standardized cross-lagged effect of y1,τ−1 on y2,τ is larger than

the cross-lagged effect of y2,τ−1 on y1,τ , researchers may draw the conclusion that y1

is the driving force or dominant variable of that pair (Schuurman, Ferrer, de

Boer-Sonnenschein, & Hamaker, 2016). As such, substantive researchers are

typically interested in the (relative) magnitudes and signs of these parameters.
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The continuous time framework

In contrast to the DT framework, which treats values of processes indexed by

observation τ , the CT framework treats processes as functions of the continuous

variable time t: The processes being modeled are assumed to vary continuously with

respect to time, meaning that these variables may take on values if observed at any

imaginable moment. CT processes can be modeled using a broad class of differential

equations, allowing for a wide degree of diversity in the types of dynamics that are

being modeled. It is important to note that many DT models have a differential

equation counterpart. For the VAR(1) model, the CT equivalent is the first-order

Stochastic Differential Equation (SDE), where stochastic refers to the presence of

random innovations or shocks.

The first-order SDE describes how the position of the V -dimensional system at

a certain point in time, y(t), relative to the equilibrium position µ, is related to the

rate of change of the process with respect to time (i.e., dy(t)
dt

) in that same instant.

The latter can also be thought of as a vector of velocities, describing in what

direction and with what magnitude the system will move an instant later in time

(i.e., the ratio of the change in position over some time-interval, to the length of

that time-interval, as the length of the time-interval approaches zero). The

first-order SDE can be expressed as

dy(t)

dt
= A(y(t)− µ) +G

dW (t)

dt
(2)

where y(t),dy(t)
dt

and µ are V × 1 column vectors described above, y(t)− µ

represents the position as a deviation from the equilibrium, and the V × V matrix

A represents the drift matrix relating dy(t)
dt

to (y(t)− µ). The diagonal elements of

A, relating the position in a certain dimension to the velocity in that same
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dimension, are referred to as auto-effects while the off-diagonal elements are referred

to as cross-effects. The second part on the right-hand side of Equation (2)

represents the stochastic part of the model: W (t) denotes the so-called Wiener

process, broadly speaking a continuous-time analogue of a random walk. This

stochastic element has a variance-covariance matrix GG′ = Γ, which is often

referred to as the diffusion matrix (for details see Voelkle et al., 2012).

The model representation in Equation (2) is referred to as the differential form

as it includes the derivative dy(t)
dt

. The same model can be represented in the

integral form, in which the derivatives are integrated out, sometimes referred to as

the solution of the derivative model. The integral form of this particular first-order

differential equation is known as the CT-VAR(1) or Ornstein-Uhlenbeck model

(Oravecz, Tuerlinckx, & Vandekerckhove, 2011). In this form, we can describe the

same system, but now in terms of the positions of the system (i.e., the values the

variables take on) at different points in time. For notational simplicity, we can

represent y(t)− µ as yc(t), denoting the position of the process as a deviation from

its equilibrium.

The CT-VAR(1) model can be written as

yc(t) = eA∆tyc(t−∆t) +w(∆t) (3)

where A has the same meaning as above, the V × 1 vector yc(t−∆t) represents the

position as a deviation from equilibrium some time-interval ∆t earlier, e represents

the matrix exponential function, and the V × 1 column vector w(∆t) represents the

stochastic innovations, the integral form of the Wiener process in Equation (2).

These innovations are normally distributed with a variance-covariance matrix that

is a function of the time-interval between measurements ∆t, the drift matrix A, and
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the diffusion matrix Γ (cf. Voelkle et al., 2012).2 As the variables in the model have

been centered around their equilibrium, we omit any intercept term. The

relationship between lagged variables, that is, the relationships between the

positions of the centered variables in the multivariate space, separated by some

time-interval ∆t, is an (exponential) function of the drift matrix A and the length

of that time-interval.

Relating DT and CT models

It is clear from the integral form of the first-order SDE given in Equation (3)

that the relationship between lagged values of variables is dependent on the length

of the time-interval between these lagged values. As such, if the DT-VAR(1) model

in Equation 1 is fitted to data generated by the CT model considered here, then the

auto-regressive and cross lagged effects matrix Φ will be a function of the

time-interval ∆t between the measurements. We denote this dependency by writing

Φ(∆t). This characteristic of the DT model has been referred to as the lag problem

(Gollob & Reichardt, 1987; Reichardt, 2011).

The precise relationship between the CT-VAR(1) and DT-VAR(1) effects

matrices is given by the well-known equality

Φ(∆t) = eA∆t. (4)

Despite this relatively simple relationship, it should be noted that taking the

exponential of a matrix is not equivalent to taking the exponential of each of the

elements of the matrix. That is, any lagged effect parameter φij(∆t), relating

variable i and variable j across time-points, is not only dependent on the

corresponding CT cross-effect aij, but is a non-linear function of the interval and
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every other element of the matrix A. For example, in the bivariate case the DT

cross-lagged effect of y1(t−∆t) on y2(t), denoted φ21(∆t), is given by

a21(e
1
2

(a11+a22+
√
a2

11+4a12a21−2a11a22+a2
22)∆t − e 1

2
(a11+a22−

√
a2

11+4a12a21−2a11a22+a2
22)∆t)√

a2
11 + 4a12a21 − 2a11a22 + a2

22

(5)

where e represents the scalar exponential. In higher dimensional models, these

relationships quickly become intractable. For a derivation of Equation 5 we refer

readers to Appendix A.

This complicated non-linear relationship between the elements of Φ and the

time-interval has major implications for applied researchers who wish to interpret

the parameters of a DT-VAR(1) model in the substantive terms outlined above. In

the general multivariate case, the size, sign, and relative strengths of both

auto-regressive and cross-lagged effects may differ depending on the value of the

time-interval used in data collection (Deboeck & Preacher, 2016; Dormann &

Griffin, 2015; Oud, 2007; Reichardt, 2011). As such, conclusions that researchers

draw regarding the stability of processes, and the nature of how different processes

relate to one another may differ greatly depending on the time-interval used.

While the relationship in Equation 4 describes the DT-VAR(1) effects matrix

we would find given data generated by a CT-VAR(1) model, the reader should note

that not all DT-VAR(1) processes have a straightforward equivalent representation

as a CT-VAR(1). For example, a univariate discrete-time AR(1) process with a

negative auto-regressive parameter cannot be represented as a CT-AR(1) process; as

the exponential function is always positive, there is no A that satisfies Equation 4

for Φ < 0. As such, we can refer to DT-VAR(1) models with a CT-VAR(1)

equivalent as those which exhibit ‘positive autoregression’. We will focus

throughout on the CT-VAR(1) as the data-generating model.3
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Types of dynamics: Eigenvalues, stability and equilibrium

Both the DT-VAR(1) model and the CT-VAR(1) model can be used to

describe a variety of different types of dynamic behaviour. As the dynamic

behaviour of a system is always understood with regards to how the variables in the

system move in relation to the equilibrium position, often dynamic behaviours are

described by differentiating the type of equilibrium position or fixed point in the

system (Strogatz, 2014). In the general multivariate case, we can understand these

different types of dynamic behaviour or fixed points with respect to the eigenvalues

of the effects matrices A or Φ (see Appendix A for a more detailed explanation of

the relationship between these two matrices and eigenvalues). In this chapter we

will focus on stable processes, in which, given a perturbation, the system of interest

will inevitably return to the equilibrium position. We limit our treatment to these

types of processes, because we believe these are most common and most relevant for

applied researchers. A brief description of other types of fixed points and how they

relate to the eigenvalues of the effects matrix A is given in the discussion section -

for a more complete taxonomy we refer readers to (Strogatz, 2014, p.136).

In DT settings, stable processes are those for which the absolute values of the

eigenvalues of Φ are smaller than one. In DT applications researchers also typically

discuss the need for stationarity, that is, time-invariant mean and variance, as

introduced above. Stability of a process ensures that stationarity in relation to the

mean and variance hold. For CT-VAR(1) processes, stability is ensured if the

real-parts of the eigenvalues of A are negative. It is interesting to note that the

equilibrium position of stable processes can be related to our observed data in

various ways: In some applications µ is constrained to be equal to the mean of the
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observed values (e.g., Hamaker et al., 2005; Hamaker & Grasman, 2015), while in

others the equilibrium can be specified a-priori or estimated to be equal to some

(asymptotic) value (e.g., Bisconti, Bergeman, & Boker, 2004).

We can further distinguish between dynamic processes that have real

eigenvalues, complex eigenvalues, or in the case of systems with more than two

variables, a mix of both. In the section “Making Sense of CT Models” we will focus

on the interpretation of a CT-VAR(1) model with real, negative, non-equal

eigenvalues. We can describe the equilibrium position of this system as a stable

node. In the discussion section we examine another type of system which has been

the focus of psychological research, sometimes described as a damped linear

oscillator (e.g. Boker, Montpetit, Hunter, & Bergeman, 2010), in which the

eigenvalues of A are complex, with a negative real part. The fixed point of such a

system is described as a stable spiral. Further detail on the interpretation of these

two types of systems is given in the corresponding sections.

Why researchers should adopt a CT process perspective

There are both practical and theoretical benefits to CT model estimation over

DT model estimation. Here we will discus three of of these practical advantages

which have received notable attention in the literature. We then discuss the

fundamental conceptual benefits of treating psychological processes as

continuous-time systems.

The first practical benefit to CT model estimation is that the CT model deals

well with observations taken at unequal intervals, often the case in experience

sampling and ecological momentary assessment datasets (Oud & Jansen, 2000;
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Voelkle & Oud, 2013; Voelkle et al., 2012). Many studies use random intervals

between measurements, for example to avoid participant-anticipation of

measurement occassions, potentially resulting in unequal time-intervals both within

and between participants. The DT model, however, is based on the assumption of

equally spaced measurements, and as such estimating the DT model from unequally

spaced data will result in an estimated Φ matrix that is a blend of different Φ(∆t)

matrices for a range of values of ∆t.

The second practical benefit of CT modeling over DT modeling is that, when

measurements are equally spaced, the lagged effects estimated by the DT models

are not generalizable beyond the time-interval used in data collection. Several

different researchers have demonstrated that utilizing different time-intervals of

measurement can lead researchers to reach very different conclusions regarding the

values of parameters in Φ (Oud & Jansen, 2000; Reichardt, 2011; Voelkle et al.,

2012). The CT model has thus been promoted as facilitating better comparisons of

results between studies, as the CT effects matrix A is independent of time-interval

(assuming a sufficient frequency of measurement to capture the relevant dynamics).

Third, the application of CT models allows us to explore how cross-lagged

effects are expected to change depending on the time-interval between

measurements, using the relationship expressed in Equation (4). Some authors have

used this relationship to identify the time-interval at which cross-lagged effects are

expected to reach a maximum (Deboeck & Preacher, 2016; Dormann & Griffin,

2015). Such information could be used to decide upon the ‘optimal’ time-interval

that should be used in gathering data in future research.

While these practical concerns regarding the use of DT models for CT
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processes are legitimate, there may be instances in which alternative practical

solutions can be used, without necessitating the estimation of a CT model. For

instance, the problem of unequally spaced measurements in DT modeling can be

addressed by defining a time grid and adding missing data to your observations, to

make the occasions approximately equally spaced in time. Some simulation studies

indicate that this largely reduces the bias that results from using DT estimation of

unequally spaced data (De Haan-Rietdijk, Voelkle, Keijsers, & Hamaker, 2017;

Safarkhani, Vermunt, & Hamaker, in preperation).

Furthermore, the issue of comparability between studies that use different

time-intervals can be solved, in certain circumstances, by a simple transformation of

the estimated Φ matrix, described in more detail by Kuiper and Ryan (under

review). Given an estimate of Φ(∆t) we can solve for the underlying A using

Equation 4. This is known as the “indirect method” of CT model estimation (Oud,

van Leeuwe, & Jansen, 1993). However this approach cannot be applied in all

circumstances, as it involves using the matrix logarithm, the inverse of the matrix

exponential function. As the matrix logarithm function in the general case does not

give a unique solution, this method is only appropriate if both the estimated Φ(∆t)

and true underlying A matrices have real eigenvalues only (for further discussion of

this issue see Hamerle, Nagl, & Singer, 1991).

However, the CT perspective has added value above and beyond the potential

practical benefits discussed above. Multiple authors have argued that psychological

phenomena, such as stress, affect and anxiety, do not vary in discrete steps over

time, but likely vary and evolve in a continuous and smooth manner (Boker, 2002;

Gollob & Reichardt, 1987). Viewing psychological processes as CT dynamic systems
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has important implications for the way we conceptualise the influence of

psychological variables on each other. Gollob and Reichardt (1987) give the example

of a researcher who is interested in the effect of taking aspirin on headaches: This

effect may be zero shortly after taking the painkiller, substantial an hour or so later,

and near zero again after twenty-four hours. All of these results may be considered

as accurately portraying the effect of painkillers on headaches for a specific

time-interval, although each of these intervals considered separately represent only a

snapshot of the process of interest.

It is only through examining the underlying dynamic trajectories, and

exploring how the cross-lagged relationships evolve and vary as a function of the

time-interval, that we can come to a more complete picture of the dynamic system

of study. We believe that - while the practical benefits of CT modelling are

substantial - the conceptual framework of viewing psychological variables as CT

processes has the potential to transform longitudinal research in this field.

Making sense of CT models

In this section, we illustrate how researchers can evaluate psychological

variables as dynamic CT processes by describing the interpretation of the drift

matrix parameters A. We describe multiple ways in which the dynamic behaviour

of the model in general, as well as specific model parameters, can be understood. In

order to aid researchers who are unfamiliar with this type of analysis, we take a

broad approach in which we incorporate the different ways in which researchers

interested in dynamical systems and similar models interpret their results. For

instance, Boker and colleagues (e.g., Boker, Montpetit, et al., 2010) typically
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interpret the differential form of the model directly; in the econometrics literature it

is typical to plot specific trajectories using Impulse Response Functions (Johnston &

DiNardo, 1972); in the physics tradition, the dynamics of the system are inspected

using Vector Fields (e.g., Boker & McArdle, 1995); the work of Voelkle, Oud and

others (e.g., Deboeck & Preacher, 2016; Voelkle et al., 2012) typically focuses on the

integral form of the equation, and visually inspecting the time-interval dependency

of lagged effects.

We will approach the interpretation of a single CT model from these four

angles, and show how they each represent complimentary ways to understand the

same system. For ease of interpretation we focus here on a bivariate system; the

analysis of larger systems is addressed in the discussion section.

Substantive Example from Empirical Data

To illustrate the diverse ways in which the dynamics described by the

CT-VAR(1) model can be understood, we make use of a substantive example. This

example is based on our analysis of a publicly-available single-subject ESM dataset

(Kossakowski, Groot, Haslbeck, Borsboom, & Wichers, 2017). The subject in

question is a 57-year old male with a history of major depression. The data consists

of momentary, daily and weekly items relating to affective states. The assessment

period includes a double-blind phase in which the dosage of the participants

anti-depression medication was reduced. We select only those measurements made

in the initial phases of the study, before medication reduction; it is only during this

period that we would expect the system of interest to be stable. The selected

measurements consists of 286 momentary assessments over a period of 42

consecutive days. The modal time-interval between momentary assessments was



18

1.766 hours (inter-quartile range of 1.250 to 3.323).

For our analysis we selected two momentary assessment items, “I feel down”

and “I am tired”, which we will name Down (Do) and Tired (Ti), respectively.

Feeling down is broadly related to assessments of negative affect (Meier & Robinson,

2004), and numerous cross-sectional analyses have suggested a relationship between

negative affect and feelings of physical tiredness or fatigue (e.g., Denollet &

De Vries, 2006). This dataset afforded us the opportunity to investigate the links

between these two processes from a dynamic perspective. Each variable was

standardized before the analysis to facilitate ease of interpretation of the parameter

estimates. Positive values of Do indicate that the participant felt down more than

average, negative values indicate below-average feelings of being down, and likewise

for positive and negative values of Ti.

The analysis was conducted using the ctsem package in R (Driver et al., 2017).

Full details of the analysis can be found in Appendix B. Parameter estimates and

standard errors are given in Table 1, including estimates of the stochastic part of

the CT model, represented by the diffusion matrix Γ. The negative value of γ21

indicates that there is a negative co-variance between the stochastic input to the

rates of change of Do and Ti; in terms of the CT-VAR(1) representation, there is a

negative covariance between the residuals of Do and Ti in the same measurement

occassion. Further interpretation of the diffusion matrix falls beyond the scope of

the current chapter. As the analysis is meant as an illustrative example only, we will

throughout interpret the estimated drift matrix parameter as though they are true

population parameters.
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Insert Table 1 about here

Interpreting the drift parameters

The drift matrix relating the processes Down (Do(t)) and Tired (Ti(t)) is

given by

A =

 −0.995 0.573

0.375 −2.416

 . (6)

As the variables are standardized, the equilibrium position is µ = [0, 0] (i.e.,

E[Do(t)] = E[Ti(t)] = 0). The drift matrix A describes how the position of the

system at any particular time t (i.e., Do(t) and Ti(t)) relates to the velocity or rate

of change of the process, that is, how the position of the process is changing. The

system of equations which describe the dynamic system made up of Down and

Tired is given by

 E[dDo(t)
dt

]

E[dT i(t)
dt

]

 =

 −0.995 0.573

0.375 −2.416


 Do(t)

Ti(t)

 (7)

such that

E[
dDo(t)

dt
] = −0.995Do(t) + 0.573Ti(t) (8)

E[
dT i(t)

dt
] = 0.375Do(t)− 2.416Ti(t) (9)

where the rates of change of Down and Tired at any point in time are both

dependent on the positions of both Down and Tired at that time.
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Before interpreting any particular parameter in the drift matrix, we can

determine the type of dynamic process under consideration by inspecting the

eigenvalues of A. The eigenvalues of A are λ1 = −2.554 and λ2 = −0.857; since

both eigenvalues are negative, the process under consideration is stable. This means

that if the system takes on a position away from equilibrium (e.g., due to a random

shock from the stochastic part of the model on either Down or Tired), the system

will inevitably return to its equilibrium position over time. It is for this reason that

the equilibrium position or fixed point in stable systems is also described as the

attractor point, and stable systems are described as equilibrium-reverting. As the

eigenvalues of the system are real-valued as well as negative, the system returns to

equilibrium with an exponential decay ; when the process is far away from the

equilibrium, it takes on a greater velocity, that is, moves faster towards equilibrium.

We can refer to the type of fixed point in this system as a stable node (Strogatz,

2014).

Typical of such an equilibrium-reverting process, we see negative CT

auto-effects a11 = −0.995 and a22 = −2.416. This reflects that, if either variable in

the system takes on a position away from the equilibrium, they will take on a

velocity of opposite sign to this deviation, that is, a velocity which returns the

process to equilibrium. For higher values of Do(t), the rate of change of Do(t) is of

greater (negative) magnitude, that is, the velocity towards the equilibrium is higher.

In addition, the auto-effect of Ti(t) is more than twice as strong (in an absolute

sense) as the auto-effect of Do(t). If there were no cross-effects present, this would

imply that Ti(t) returns to equilibrium faster than Do(t); however, as there are

cross-effects present, such statements cannot be made in the general case from
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inspecting the auto-effects alone.

In this case the cross-effects of Do(t) and Ti(t) on each others rates of change

are positive rather than negative. Moreover, the cross-effect of Ti(t) on the rate of

change of Do(t) (a12 = 0.573) is slightly stronger than the corresponding cross-effect

of Do(t) on the rate of change of Ti(t) (a21 = 0.375). These cross-effects quantify

the force that each component of the system exerts on the other. However,

depending on what values each variable takes on at a particular point in time t, that

is, the position of the system in each of the Do(t) and Ti(t) dimensions, this may

translate to Do(t) pushing Ti(t) to return faster to its equilibrium or to deviate

away from its equilibrium position, and vice versa. To better understand both the

cross-effects and auto-effects described by A, it is helpful to visualise the possible

trajectories of our two-dimensional system.

Visualising Trajectories

We will now describe and apply two related tools which allow us to visualise

the trajectories of the variables in our model over time: Impulse Response Functions

and Vector Fields. These tools can help us to understand the dynamic system we

are studying, by exploring the dynamic behaviour which results from the drift

matrix parameters.

Impulse Response Functions. Impulse Response Functions (IRFs) are typically

used in the econometrics literature to aid in making forecasts based on a DT-VAR

model. The idea behind this is to allow us to explore how an impulse to one variable

in the model at occasion τ will affect the values of both itself and the other

variables in the model at occasions τ + 1, τ + 2, τ + 3 and so on. In the stochastic
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systems we focus on in this chapter, we can conceptualise these impulses as random

perturbations or innovations, or alternatively as external interventions in the

system.4 IRFs thus represent the trajectories of the variables in the model over

time, following a particular impulse, assuming no further stochastic innovations (see

Johnston & DiNardo, 1972, Chapter 9).

To specify impulses in an IRF, we generally assign a value to a single variable

in the system at some initial occasion, yi,τ . The corresponding values of the other

variables at the initial occasion yj,τ , j 6= i are usually calculated based on, for

instance, the covariance in the stochastic innovations, Ψ, or the stable covariance

between the processes Σ. Such an approach is beneficial in at least two ways: first,

it allows researchers to specify impulses which are more likely to occur in an

observed dataset; second, it aids researchers in making more accurate future

predictions or forecasts. For a further discussion of this issue in relation to DT-VAR

models, we refer the reader to Johnston and DiNardo (1972) pages 298-300. Below,

we will take a simplified approach and specify bi-variate impulses at substantively

interesting values.

The IRF can easily be extended for use with the CT-VAR(1) model. We can

calculate the impulse response of our system by taking the integral form of the

CT-VAR(1) model in Equation (3) and a) plugging in the A matrix for our system,

b) choosing some substantively interesting set of impulses y(t = 0) and c)

calculating y(t) for increasing values of t > 0. To illustrate this procedure, we will

specify four substantively interesting sets of impulses. The four sets of impulses

shown here include y(0) = [1, 0], reflecting what happens when Do(0) takes on a

positive value 1 standard deviation above the persons mean, while Ti(0) is at
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equilibrium; y(0) = [0, 1] reflecting when Ti(0) takes on a positive value of

corresponding size while Do(0) is at equilibrium; y(0) = [1, 1] reflecting what

happens when Do(0) and Ti(0) both take on values 1 standard deviation above the

mean; and y(0) = [1,−1] reflecting what happens when Do(0) and Ti(0) take on

values of equal magnitude but opposite valence (1SD more and 1SD less than the

mean respectively). Figures 1(a) to 1(d) contain the IRFs for both processes in each

of these four scenarios.

Insert Figure 1 about here

Examining the IRFs shows us the equilibrium-reverting behaviour of the

system: Given any set of starting values, the process eventually returns, in an

exponential fashion, to the bivariate equilibrium position where both processes take

on a value of zero.

In Figure 1(a), we can see that when Ti(t) is at equilibrium and Do(0) takes

on a value of plus one, then Ti(t) is pushed away from equilibrium in the same (i.e.,

positive) direction. In substantive terms, when our participant is feeling down at a

particular moment, he begins to feel a little tired. Eventually, both Do(t) and Ti(t)

return to equilibrium due to their negative auto-effects. The feelings of being down

and tired have returned to normal around t = 4, that is, four hours after the initial

impulse; stronger impulses (|Do(0)| > 1) will result in the system taking longer to

return to equilibrium, and weaker impulses (|Do(0)| < 1) would dissipate quicker.

Figure 1(b) shows the corresponding reaction of Do(t) at equilibrium to a

positive value of Ti(0). We can further see that the deviation of Do(t) in
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Figure 1(b) is greater than the deviation of Ti(t) in Figure 1(a): a positive value of

Ti(t) exerts a greater push on Do(t) than vice versa, because of the greater

cross-effect of Ti(t) on Do(t). In this case this strong cross-effect, combined with

the relatively weaker auto-effect of Do(t), results in Do(t) taking on a higher value

than Ti(t) at around t = 1, one hour after the initial impulse. Substantively, when

our participant is feeling physically tired at a particular moment (Figure 1(b)), he

begins to feel a down over the next couple of hours, before eventually these feelings

return to normal (again in this case, around 4 hours later).

Figures 1(c) further demonstrates the role of the negative auto-effects and

positive cross-effects in different scenarios. In Figure 1(c), both processes take on

positive values at t = 0; the positive cross-effects result in both processes returning

to equilibrium at a slower rate than in Figures 1(a) and 1(b). In substantive terms

this means that, when the participant is feeling very down, and very tired, it takes

longer for the participant to return to feeling normal. Here also the stronger

auto-effect of Ti(t) than Do(t) is evident: although both processes start at the same

value, an hour later Ti(1) is much closer to zero than Do(1), that is, Ti(t) decays

faster to equilibrium than Do(t). In substantive terms, this tells us that when the

participant is feeling down and physically tired, he recovers much quicker from the

physical tiredness than he does from feeling down.

In Figure 1(d), we see that Do(0) and Ti(0) taking on values of opposite signs

results in a speeding-up of the rate at which each variable decays to equilibrium.

The auto-effect of Do(t) is negative, which is added to by the positive cross-effect of

Ti(t) multiplied by the negative value of Ti(0). This means that Do(0) in Figure

1(d) takes on a stronger negative velocity, in comparison to Figures 1(a) or 1(c). A
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positive value for Do(0) has a corresponding effect of making Ti(0) take on an even

stronger positive velocity. Substantively, this means that when the participant feels

down, but feels less tired (i.e. more energetic) than usual, both of these feelings

wear off and return to normal quicker than in the other scenarios we examined. The

stronger auto-effect of Ti(t), in combination with the positive cross-effect of Do(t)

on Ti(t), actually results in Ti(t) shooting past the equilibrium position in the Ti(t)

dimension (Ti(t) = 0) and taking on positive values around t = 1.5, before the

system as a whole returns to equilibrium. Substantively, when the participant is

feeling initially down but quite energetic, we expect that he feels a little bit more

tired than usual about an hour and half later, before both feelings return to normal.

Vector Field. Vector fields are another technique which can be used to

visualise the dynamic behaviour of the system by showing potential trajectories

through a bivariate space. In our case the two axes of this space are Do(t) and

Ti(t). The advantage of vector fields over IRFs in this context is that in one plot it

shows how, for a range of possible starting positions, the process is expected to

move in the (bivariate) space a moment later. For this reason, the vector field is

particularly useful in bivariate models with complex dynamics, in which it may be

difficult to obtain the full picture of the dynamic system from a few IRFs alone.

Furthermore, by showing the dynamics for a grid of values, we can identify areas in

which the movement of the process is similar or differs.

To create a vector field, E[dy(t)
dt

] is calculated for a grid of possible values for

y1(t) and y2(t) covering the full range of the values both variables can take on. The

vector field for Do(t) and Ti(t) is shown in Figure 2. The base of each arrow

represents a potential position of the process y(t). The head of the arrow represents
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where the process will be if we take one small step in time forward, that is the value

of y(t+ ∆t) as ∆t approaches zero. In other words, the arrows in this vector field

represent the information of two derivatives, dDo(t)/dt and dT i(t)/dt. Specifically,

the direction the arrow is pointing is a function of the sign (positive or negative) of

the derivatives, while the length of the arrow represents the magnitude of this

movement, and is a function of the absolute values of the derivative(s).

Insert Figure 2 about here

If an arrow in the vector field is completely vertical, this means that, for that

position, taking one small step forward in time would result in a change in the

system’s position along the Ti(t) axis (i.e., a change in the value of Tired), but not

along the Do(t) axis (that is, dDo(t)/dt = 0 and dT i(t)/dt 6= 0). The converse is

true for a horizontal arrow (that is, dDo(t)/dt 6= 0 and dT i(t)/dt = 0). The two

lines in Figure 2, blue and red, identify at which positions dDo(t)/dt = 0 and

dT i(t)/dt = 0, respectively; these are often referred to as nullclines. If the nullclines

are not perfectly perpendicular to one another, this is due to the presence of at least

one cross-effect. The point at which these nullclines cross represents the equilibrium

position in this two-dimensional space, here located at Do(t) = 0, T i(t) = 0. The

crossing of these nullclines splits the vector field in four quadrants, each of which is

characterized by a different combination of negative and positive values for

dDo(t)/dt and dT i(t)/dt. The top left and bottom right quadrants represent areas

in which the derivatives are of opposite sign, dDo(t)/dt > 0 & dT i(t)/dt < 0 and

dDo(t)/dt < 0 & dT i(t)/dt > 0, respectively. The top right and bottom left
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quadrants represent areas where the derivatives are of the same sign, dDo(t)/dt < 0

& dT i(t) < 0 and dDo(t)/dt > 0 & dT i(t) > 0, respectively.

By tracing a path through the arrows, we can see the trajectory of the system

of interest from any point in the possible space of values. In Figure 2, we include the

same four bi-variate trajectories as we examined with the IRFs. Instead of the IRF

representation of two variables whose values are changing, the vector field represents

this as the movement of one process in a two-dimensional space. For instance, the

trajectory starting at Do(t) = 0 and Ti(t) = 1 begins in the top-left quadrant, where

dDo(t)/dt is positive and dT i(t)/dt is negative; this implies that the value of Down

will increase, and the value of Tired will decrease (as can be seen in Figure 1(b)).

Instead of moving directly to the equilibrium along the Ti(t) dimension, the system

moves away from equilibrium along the Do(t) dimension, due to the cross-effect of

Ti(t) on Do(t), until it moves into the top-right quadrant. In this quadrant,

dDo(t)/dt and dT i(t)/dt are both negative; once in this quadrant the process moves

towards equilibrium, tangent to the dDo(t)/dt nullcline. The other trajectories in

Figure 2 analogously describe the same trajectories as in Figure 1(a), 1(c) and 1(d).

In general, the trajectories in this vector field first decay quickest along the

Ti(t) dimension, and slowest along the Do(t) dimension. This can be clearly seen in

trajectories b), c), and d). Each of these trajectories first change steeply in the Ti(t)

dimension, before moving to equilibrium at a tangent to the red (dDo(t)
dt

) nullcline.

This general property of the bi-dimensional system is again related to the much

stronger auto-effect of Ti(t), and the relatively small cross-effects. In a technical

sense we can say that that Do(t) represents the ‘slowest eigen-direction’ (Strogatz,

2014, Chapter 5).
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Inspecting the lagged parameters

Another way to gain insight into the processes of interest is by determining

the relationships between lagged positions of the system, according to our drift

matrix. To this end, we can use Equation (4) to determine Φ(∆t) for some ∆t. For

instance, we can see that the auto-regressive and cross-lagged relationships between

values of Competence and Exhaustion given ∆t = 1 are

Φ(∆t = 1) =

 0.396 0.117

0.077 0.106

 . (10)

For this given time-interval, the cross-lagged effect of Down on Tired

(φ21(∆t = 1) = 0.077) is smaller than the cross-lagged effect of Tired on Down

(φ12(∆t = 1) = 0.117). However, as shown in Equation (5) the value of each of these

lagged effects changes in a non-linear way depending on the time-interval chosen.

To visualise this, we can calculate Φ(∆t) for a range of ∆t, and represent this

information graphically in a lagged parameter plot, as in Figure 3.

Insert Figure 3 about here

From Figure 3, we can see that both cross-lagged effects reach their maximum

(and have their maximum difference) at a time-interval of ∆t = 0.65; furthermore,

we can see that the greater cross-effect (a12) results in a stronger cross-lagged effect

φ12(∆t) for a range of ∆t. Moreover, we can visually inspect how the size of each of

the effects of interest, as well as the difference between these effects, varies

according to the time-interval. From a substantive viewpoint, we could say that the
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effect of feeling physically tired has the strongest effect on feelings of being down

around 40 minutes later.

While the shape of the lagged parameters may appear similar to the shapes of

the trajectories plotted in the IRFs, lagged parameter plots and IRFs represent

substantively different information. IRFs plot the positions of each variable in the

system as they change over time, given some impulse (y(t) vs t given some y(0)). In

contrast, lagged parameter plots show how the lagged relationships change

depending on the length of the time-interval between them, independent of impulse

values (eA∆t vs ∆t). The lagged relationships can be thought of as the components

which go into determining any specific trajectories.

Caution with interpreting estimated parameters

It is important to note that in the above interpretation of CT models, we have

treated the matrix A as known. In practice of course researchers should take

account of the uncertainty in parameter estimates. For example, the ctsem package

also provides lagged parameter plots with credible intervals to account for this

uncertainty.

Furthermore, researchers should be cautious about extrapolating beyond the

data. For instance, when we consider a vector field, we should be careful about

interpreting regions in which there is little or no observed data (cf. Boker &

McArdle, 1995). The same logic applies for the interpretation of IRFs for impulses

that do not match observed values. Moreover, we should also be aware that

interpreting lagged parameter plots for time-intervals much shorter than those we

observe data at is a form of extrapolation: It relies on strong model-based

assumptions, such as ruling out the possibility of a high-frequency higher-order
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process (Voelkle & Oud, 2013; Voelkle et al., 2012).

Discussion

In this chapter we have set out to clarify the connection between DT- and

CT-VAR(1) models, and how we can interpret and represent the results from these

models. So far we have focused on single-subject, two-dimensional, first-order

systems with a stable node equilibrium. However, there are many ways in which

these models can be extended, to match more complicated data and/or dynamic

behaviour. Below we consider three such extensions: a) systems with more than two

dimensions (i.e., variables); b) different types of fixed points resulting from non-real

eigenvalues of the drift matrix; and c) moving from single-subject to multi-level

datasets.

Beyond two-dimensional systems

In the empirical illustration, we examined the interpretation of a drift matrix

in the context of a bivariate CT-VAR(1) model. Notably, the current trend in

applications of DT-VAR(1) models in psychology has been to focus more and more

on the analysis of large systems of variables, as typified, for example, by the dynamic

network approach of Bringmann et al. (2016, 2013). The complexity of these models

grows rapidly as the number of variables is added: To estimate a full drift matrix for

a system of three variables, we must estimate nine unique parameters, in contrast to

four drift matrix parameters for a bivariate system. In addition, we must estimate a

three-by-three covariance matrix for the residuals, rather than a two-by-two matrix.

The relationship between the elements of A and Φ(∆t) becomes even less

intuitive once the interest is in a system of three variables, because the lagged
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parameter values are dependent on the drift matrix as a whole, as explained earlier.

This means that both the relative sizes, as well as the signs of the cross-lagged

effects may differ depending on the interval: The same lagged parameter may be

negative for some time-intervals and positive for others, and zero-elements of A can

result in corresponding non-zero elements of Φ (cf. Aalen, Gran, Røysland,

Stensrud, & Strohmaier, 2017; Aalen, Røysland, Gran, Kouyos, & Lange, 2016;

Aalen, Røysland, Gran, & Ledergerber, 2012; Deboeck & Preacher, 2016).

Therefore, although we saw in our bivariate example that, for instance, negative CT

cross-effects resulted in negative DT cross-lagged effects, this does not necessarily

hold in the general case (Kuiper & Ryan, under review).

Additionally, substantive interpretation of the lagged parameters in systems

with more than two variables also becomes less straightforward. For example,

Deboeck and Preacher (2016), Aalen et al. (2016, 2012) and Aalen et al. (2017)

argue that the interpretation of Φ(∆t) parameters in mediation models (with three

variables and a triangular A matrix) as direct effects may be misleading: Deboeck

and Preacher argue that instead they should be interpreted as total effects. This has

major consequences for the practice of DT analyses and the interpretation of its

results.

Complex and Positive Eigenvalues

The empirical illustration is characterized by a system with negative, real,

non-equal eigenvalues, which implies that the fixed point in the system is a stable

node. In theory, however, there is no reason that psychological processes must

adhere to this type of dynamic behaviour. We can apply the tools we have defined

already to understand the types of behaviour that might be described by other
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types of drift matrices. Notably, some systems may have drift matrices with

complex eigenvalues, that is, eigenvalues of the form α± ωi, where i =
√
−1 is the

imaginary number, ω 6= 0, α is referred to as the real part, and ωi as the imaginary

part of the eigenvalue. If the real component of these eigenvalues is negative

(α < 0), then the system is still stable, and given a deviation it will return

eventually to a resting state at equilibrium. However, unlike the systems we have

described before, these types of systems spiral or oscillate around the equilibrium

point, before eventually coming to rest. Such systems have been described as stable

spirals, or alternatively as damped (linear or harmonic) oscillators (Boker,

Montpetit, et al., 2010; Voelkle & Oud, 2013).

A vector field for a process which exhibits this type of stable spiral behaviour

is shown in Figure 4, with accompanying trajectories. The drift matrix

corresponding to this vector field is

A =

 −0.995 0.573

−2.000 −2.416

 (11)

which is equivalent to our empirical example above, but with the value of a21 altered

from 0.375 to −2.000. The eigenvalues of this matrix are λ1 = −1.706 + 0.800i and

λ2 = −1.706− 0.800i. In contrast to our empirical example, we can see that the

trajectories follow a spiral pattern; the trajectory which starts at y1(t) = 1, y2(t) = 1

actually overshoots the equilibrium in the Ti(t) dimension before spiraling back

once in the bottom quadrant. There are numerous examples of psychological

systems that are modeled as damped linear oscillators using second-order

differential equations, which include the first- and second-order derivatives (cf.,

Bisconti et al., 2004; Boker, Montpetit, et al., 2010; Boker & Nesselroade, 2002;
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Horn, Strachan, & Turkheimer, 2015). However, as shown here, such behaviour may

also result from a first-order model.

Insert Figure 4 about here

Stable nodes and spirals can be considered the two major types of stable fixed

points, as they occur whenever the real part of the eigenvalues of A are negative,

that is α < 0. Many other types of stable fixed points can be considered as special

cases: when we have real, negative eigenvalues that are exactly equal, the fixed

point is called a stable star node (if the eigenvectors are distinct), or a stable

degenerate node (if the eigenvectors are not distinct). In contrast, if the real-part of

the eigenvalues of A are positive then the system is unstable, also referred to as

non-stationary or a unit-root in the time series literature(Hamilton, 1994). This

implies that, given a deviation, the system will not return to equilibrium; in

contrast to stable systems, in which trajectories are attracted to the fixed point, the

trajectories of unstable systems are repelled by the fixed point. As such we can also

encounter unstable nodes, spirals, star nodes and degenerate nodes. The estimation

and interpretation of unstable systems in psychology may be fruitful ground for

further research.

Two further types of fixed points may be of interest to researchers; in the

special case where the eigenvalues of A have an imaginary part and no real part

(α = 0), the fixed point is called a center. In a system with a center fixed point,

trajectories spiral around the fixed point without ever reaching it. Such systems

exhibit oscillating behaviour, but without any damping of oscillations; certain
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biological systems, such as the circadian rhythm, can be modelled as a dynamic

system with a center fixed point. Such systems are on the borderline between stable

and unstable systems, sometimes referred to as neutrally stable; trajectories are

neither attracted to or repelled by the fixed point. Finally, a saddle point occurs

when the eigenvalues of A are real but of opposite sign (one negative, one positive).

Saddle points have one stable and one unstable component; only trajectories which

start exactly on the stable axis return to equilibrium, and all others do not.

Together spirals, nodes and saddle points cover the majority of the space of possible

eigenvalues for A. Strogatz (2014) describes the different dynamic behaviour

generated by different combinations of eigenvalues of A in greater detail.

Multilevel extensions

The time series literature (such as from the field of econometrics) as well as

the dynamic systems literature (such as from the field of physics) tends to be

concerned with a single dynamic system, either because there is only one case

(N = 1), or because all cases are exact replicates (e.g., molecules). In psychology

however, we typically have data from more than one person, and we also know that

people tend to be highly different. Hence, when we are interested in modeling their

longitudinal data, we should take their differences into account somehow. The

degree to which this can be done, depends on the number of time points we have

per person. In traditional panel data, we typically have between two and six waves

of data. In this case, we should allow for individual differences in means or

intercepts, in order to separate the between-person, stable differences from the

within-person dynamic process, while assuming the lagged relationships are the

same across individuals (cf. Hamaker, Kuiper, & Grasman, 2015).
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In contrast, experience sampling data and other forms of intensive longitudinal

data consist of many repeated measurement per person, such that we can allow for

individual differences in the lagged coefficients. This can be done by either

analyzing the data of each person separately, or by using a dynamic multilevel

model in which the individuals are allowed to have different parameters (cf. Boker,

Staples, & Hu, 2016; Driver et al., 2017). Many recent studies have shown that

there are substantial individual differences in the dynamics of psychological

phenomena, and that these differences can be meaningfully related to other person

characteristics, such as personality traits, gender, age, and depressive

symptomatology, but also to later health outcomes and psychological well-being

(e.g., Bringmann et al., 2013; Kuppens et al., 2010, 2012).

While the current chapter has focused on elucidating the interpretation of a

single-subject CT-VAR(1) model, the substantive interpretations and visualisation

tools we describe here can be applied in a straightforward manner to, for example,

the fixed effects estimated in a multilevel CT-VAR(1) model, or to

individual-specific parameters estimated in a multilevel framework. The latter

would however, lead to an overwhelming amount of visual information. The

development of new ways of summarizing the individual differences in dynamics,

based on the current tools, is a promising area.

Conclusion

There is no doubt that the development of dynamical systems modeling in the

field of psychology has been hampered by the difficulty in obtaining suitable data to

model such systems. However this is a barrier that recent advances in technology

will shatter in the coming years. Along with this new source of psychological data,
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new psychological theories are beginning to emerge, based on the notion of

psychological processes as dynamic systems. Although the statistical models needed

to investigate these theories may seem exotic or difficult to interpret at first, they

reflect the simple intuitive and empirical notions we have about psychological

processes: Human behaviour, emotion and cognition fluctuate continuously over

time, and the models we use should reflect that. We hope that our treatment of

CT-VAR(1) models and their interpretation will help researchers to overcome the

knowledge-barrier to this approach, and can serve as a stepping stone towards a

broader adaptation of the CT dynamical system approach to psychology.



37

References

Aalen, O., Gran, J., Røysland, K., Stensrud, M., & Strohmaier, S. (2017). Feedback

and mediation in causal inference illustrated by stochastic process models.

Scandinavian Journal of Statistics .

Aalen, O., Røysland, K., Gran, J., Kouyos, R., & Lange, T. (2016). Can we believe

the DAGs? A comment on the relationship between causal DAGs and

mechanisms. Statistical methods in medical research, 25 (5), 2294–2314.

Aalen, O., Røysland, K., Gran, J., & Ledergerber, B. (2012). Causality, mediation

and time: a dynamic viewpoint. Journal of the Royal Statistical Society:

Series A (Statistics in Society), 175 (4), 831–861.

Bisconti, T., Bergeman, C. S., & Boker, S. M. (2004). Emotional well-being in

recently bereaved widows: A dynamical system approach. Journal of

Gerontology, Series B: Psychological Sciences and Social Sciences , 59 ,

158-167.

Boker, S. M. (2002). Consequences of continuity: The hunt for intrinsic properties

within parameters of dynamics in psychological processes. Multivariate

Behavioral Research, 37 (3), 405–422.

Boker, S. M., Deboeck, P., Edler, C., & Keel, P. (2010). Generalized local linear

approximation of derivatives from time series. In S. Chow & E. Ferrar (Eds.),

Statistical methods for modeling human dynamics: An interdisciplinary

dialogue (p. 179-212). Boca Raton, FL: Taylor & Francis.

Boker, S. M., & McArdle, J. (1995). Statistical vector field analysis applied to

mixed cross-sectional and longitudinal data. Experimental Aging Research,

21 (1), 77–93.



38

Boker, S. M., & McArdle, J. J. (1995). Statistical vector field analysis applied to

mixed crosssectional and longitudinal data. Experimental Aging Research, 21 ,

77-93.

Boker, S. M., Montpetit, M. A., Hunter, M. D., & Bergeman, C. S. (2010).

Modeling resilience with differential equations. In P. Molenaar & K. Newell

(Eds.), Learning and development: Individual pathways of change (p. 183-206).

Washington, DC: American Psychological Association.

Boker, S. M., Neale, M., & Rausch, J. (2004). Latent differential equation modeling

with multivariate multi-occasion indicators. In O. H. van Montfort K. &

A. Satorra (Eds.), Recent developments on structural equation models (pp.

151–174). Dordrecht, the Netherlands: Kluwer Academic.

Boker, S. M., & Nesselroade, J. R. (2002). A method for modeling the intrinsic

dynamics of intraindividual variability: Recovering parameters of simulated

oscillators in multi-wave panel data. Multivariate Behavioral Research, 37 ,

127–160.

Boker, S. M., Staples, A. D., & Hu, Y. (2016). Dynamics of change and change in

dynamics. Journal for person-oriented research, 2 (1-2), 34.

Bolger, N., & Laurenceau, J.-P. (2013). Intensive longitudinal methods: An

introduction to diary and experience sampling research. NY: New York: The

Guilford Press.

Bringmann, L., Lemmens, L., Huibers, M., Borsboom, D., & Tuerlinckx, F. (2015).

Revealing the dynamic network structure of the beck depression inventory-ii.

Psychological medicine, 45 (4), 747–757.

Bringmann, L., Pe, M., Vissers, N., Ceulemans, E., Borsboom, D., Vanpaemel, W.,



39

. . . Kuppens, P. (2016). Assessing temporal emotion dynamics using

networks. Assessment , 23 (4), 425–435.

Bringmann, L., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, . . .

Tuerlinckx, F. (2013). A network approach to psychopathology: New insights

into clinical longitudinal data. PLoS ONE , 8 , e60188, 1-13.

Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes

with dynamic factor models: Some promising uses and extensions of ARMA

time series models. In A. Maydue-Olivares & J. J. McArdle (Eds.),

Psychometrics: A festschrift to Roderick P. McDonald (p. 415-452). Mahwah,

NJ: Lawrence Erlbaum Associates.

Chow, S., Ferrer, E., & Hsieh, F. (2011). Statistical methods for modeling human

dynamics: An interdisciplinary dialogue. New York: Routledge.

Chow, S., Ferrer, E., & Nesselroade, J. R. (2007). An unscented kalman filter

approach to the estimation of nonlinear dynamical systems models.

Multivariate Behavioral Research, 42 (2), 283–321.

Chow, S., Ram, N., Boker, S., Fujita, F., Clore, G., & Nesselroade, J. (2005).

Capturing weekly fluctuation in emotion using a latent differential structural

approach. Emotion, 5 (2), 208–225.

Deboeck, P. R., & Preacher, K. J. (2016). No need to be discrete: A method for

continuous time mediation analysis. Structural Equation Modeling: A

Multidisciplinary Journal , 23 (1), 61–75.

De Haan-Rietdijk, S., Voelkle, M. C., Keijsers, L., & Hamaker, E. (2017). Discrete-

versus continuous-time modeling of unequally spaced ESM data. Frontiers in

Psychology , 8 , 1849.



40

Denollet, J., & De Vries, J. (2006). Positive and negative affect within the realm of

depression, stress and fatigue: The two-factor distress model of the global

mood scale (gms). Journal of affective disorders , 91 (2), 171–180.

Dormann, C., & Griffin, M. A. (2015). Optimal time lags in panel studies.

Psychological methods , 20 (4), 489.

Driver, C., Oud, J., & Voelkle, M. (in press). Continuous time structural equation

modelling with r package ctsem. Journal of Statistical Software.

Driver, C., Voelkle, M., & Oud, H. (2017). ctsem: Continuous

time structural equation modelling [Computer software manual]. Retrieved from

https://cran.r-project.org/web/packages/ctsem/vignettes/hierarchical.pdf

(R package version 2.4.0)

Fisher, M. (2001). Modeling negative autoregression in continuous time.

(http://www.markfisher.net/ mefisher/papers/continuous ar.pdf)

Gault-Sherman, M. (2012). It’s a two-way street: The bidirectional relationship

between parenting and delinquency. Journal of Youth and Adolescence, 41 ,

121-145.

Gollob, H. F., & Reichardt, C. S. (1987). Taking account of time lags in causal

models. Child Development , 58 , 80–92.

Granger, C. W. J. (1969). Investigating causal relations by econometric models and

cross-spectral methods. Econometrica, 37 , 424-438.

Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of

the individual: Rationale and application of multivariate time series analysis.

Multivariate Behavioral Research, 40 (2), 207-233. doi:

10.1207/s15327906mbr4002 3



41

Hamaker, E. L., & Grasman, R. P. P. P. (2015). To center or not to center?

investigating inertia with a multilevel autoregressive model. Frontiers in

Psychology , 5 , 1492. doi: 10.3389/fpsyg.2014.01492

Hamaker, E. L., Kuiper, R., & Grasman, R. P. P. P. (2015). A critique of the

cross-lagged panel model. Psychological Methods , 20 (1), 102-116. doi:

10.1037/a0038889

Hamerle, A., Nagl, W., & Singer, H. (1991). Problems with the estimation of

stochastic differential equations using structural equations models. Journal of

Mathematical Sociology , 16 (3), 201–220.

Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University

Press.

Horn, E. E., Strachan, E., & Turkheimer, E. (2015). Psychological distress and

recurrent herpetic disease: A dynamic study of lesion recurrence and viral

shedding episodes in adults. Multivariate behavioral research, 50 (1), 134–135.

Ichii, K. (1991). Measuring mutual causation: Effects of suicide news on suicides in

Japan. Social Science Research, 20 , 188-195.

Johnston, J., & DiNardo, J. (1972). Econometric methods. New York , 19 (7), 22.

Kim, C.-J., & Nelson, C. R. (1999). State-space models with regime switching:

Classical and Gibbs-sampling approaches with applications. Cambridge, MA:

The MIT Press. doi: 10.2307/2669796

Kossakowski, J., Groot, P., Haslbeck, J., Borsboom, D., & Wichers, M. (2017).

Data from critical slowing down as a personalized early warning signal for

depression. Journal of Open Psychology Data, 5 (1).

Koval, P., Kuppens, P., Allen, N. B., & Sheeber, L. (2012). Getting stuck in



42

depression: The roles of rumination and emotional inertia. Cognition and

Emotion, 26 , 1412-1427.

Kuiper, R., & Ryan, O. (under review). Cross-lagged panel models versus

continuous-time models: Some considerations. Structural Equation Modeling .

Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional inertia and

psychological maladjustment. Psychological Science, 21 (7), 984–991.

Kuppens, P., Sheeber, L. B., Yap, M. B. H., Whittle, S., Simmons, J., & Allen,

N. B. (2012). Emotional inertia prospectively predicts the onset of depression

in adolescence. Emotion, 12 , 283-289.

Meier, B. P., & Robinson, M. D. (2004). Why the sunny side is up: Associations

between affect and vertical position. Psychological science, 15 (4), 243–247.

Moberly, N. J., & Watkins, E. R. (2008). Ruminative self-focus and negative affect:

An experience sampling study. Journal of Abnormal Psychology , 117 ,

314-323.

Moler, C., & Van Loan, C. (2003). Nineteen dubious ways to compute the

exponential of a matrix, twenty-five years later. SIAM review , 45 (1), 3–49.

Oravecz, Z., & Tuerlinckx, F. (2011). The linear mixed model and the hierarchical

ornstein–uhlenbeck model: Some equivalences and differences. British Journal

of Mathematical and Statistical Psychology , 64 (1), 134–160.

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2011). A hierarchical latent

stochastic difference equation model for affective dynamics. Psychological

Methods , 16 , 468–490.

Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (2016). Bayesian data analysis

with the bivariate hierarchical ornstein-uhlenbeck process model. Multivariate



43

behavioral research, 51 (1), 106–119.

Oud, J. (2007). Continuous time modeling of reciprocal relationships in the

cross-lagged panel design. In S. M. Boker & M. J. Wenger (Eds.), Data

analytic techniques for dynamic systems in the social and behavioral sciences

(p. 87-129). Mahwah, NJ: Lawrence Erlbaum Associates.

Oud, J., & Delsing, M. J. M. H. (2010). Continuous time modeling of panel data by

means of SEM. In K. van Montefort, J. Oud, & A. Satorra (Eds.), Longitudinal

research with latent variables (pp. 201–244). New York, NY: Springer.

Oud, J., & Jansen, R. A. (2000). Continuous time state space modeling of panel

data by means of SEM. Psychometrika, 65 (2), 199–215.

Oud, J., van Leeuwe, J., & Jansen, R. (1993). Kalman filtering in discrete and

continuous time based on longitudinal lisrel models. Advances in longitudinal

and multivariate analysis in the behavioral sciences, ITS, Nijmegen,

Netherlands , 3–26.

Reichardt, C. S. (2011). Commentary: Are three waves of data sufficient for

assessing mediation? Multivariate Behavioral Research, 46 (5), 842–851.

Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of

interindividual differences in the stability of a process. In T. A. Walls &

J. L. Schafer (Eds.), Models for intensive longitudinal data (pp. 124–147).

New York, NY: Oxford University Press.

Safarkhani, M., Vermunt, J. K., & Hamaker, E. (in preperation). A comparison of

different specifications of markov models in handling non-equidistant

observations for intensive longitudinal data.

Schuurman, N. K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker, E. L. (2016).



44

How to compare cross-lagged associations in a multilevel autoregressive model.

Psychological methods , 21 (2), 206-221.

Steele, J. S., & Ferrer, E. (2011). Latent differential equation modeling of

self-regulatory and coregulatory affective processes. Multivariate Behavioral

Research, 46 (6), 956–984.

Strogatz, S. H. (2014). Nonlinear dynamics and chaos: with applications to physics,

biology, chemistry, and engineering. Westview press.

Voelkle, M., & Oud, J. (2013). Continuous time modelling with individually varying

time intervals for oscillating and non-oscillating processes. British Journal of

Mathematical and Statistical Psychology , 66 (1), 103–126.

Voelkle, M., Oud, J. H. L., Davidov, E., & Schmidt, P. (2012). An SEM approach

to continuous time modeling of panel data: relating authoritarianism and

anomia. Psychological Methods , 17 , 176-192.

Watkins, M. W., Lei, P.-W., & Canivez, G. L. (2007). Psychometric intelligence

and achievement: A cross-lagged panel analysis. Intelligence, 35 , 59-68.



45

Appendix A

Matrix Exponential

Similarly to the scalar exponential, the matrix exponential can be defined as an

infinite sum

eA =
∞∑
k=0

1

k!
Ak

The exponential of a matrix is not equivalent to taking the scalar exponential of

each element of the matrix, unless that matrix is diagonal. The exponential of a

matrix can be found using an eigenvalue decomposition

A = V DV −1

where V is a matrix of eigenvectors of A and D is a diagonal matrix of the

eigenvalues of A (cf. Moler & Van Loan, 2003). The matrix exponential of A is

given by

eA = V eDV −1

where eD is the diagonal matrix whose entries are the scalar exponential of the

eigenvalues of A. When we want to solve for the matrix exponential of a matrix

multiplied by some constant ∆t we get

eA∆t = V eD∆tV −1 (12)

Take it that we have a 2× 2 square matrix given by

A =

 a b

c d


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and we wish to solve for eA∆t. The eigenvalues of A are given by

λ1 =
1

2
(a+ d−

√
a2 + 4bc− 2ad+ d2)

λ2 =
1

2
(a+ d+

√
a2 + 4bc− 2ad+ d2)

where we will from here on denote

R =
√
a2 + 4bc− 2ad+ d2

for notational simplicity. The exponential of the diagonal matrix made up of

eigenvalues, multiplied by the constant ∆t is given by

eD∆t =

 e
1
2

(a+d−R)∆t 0

0 e
1
2

(a+d+R)∆t


The matrix of eigenvectors of A is given by

V =

 a−d−R
2c

a−d+R
2c

1 1


assuming c 6= 0, with inverse

V −1 =

 −c
R

a−d+R
2R

c
R

−a+d+R
2R

 .
Multiplying V eDV −1 gives us

eA∆t =

 R−a+d
2R

eλ1∆t + R+a−d
2R

eλ2∆t b(−eλ1∆t+eλ2∆t)
R

c(−eλ1∆t+eλ2∆t)
R

R+a−d
2R

eλ1∆t + R−a+d
2R

eλ2∆t

 (13)

Note that we present here only a worked out example for a 2× 2 square matrix. For

larger square matrices (representing models with more variables), the eigenvalue

decomposition remains the same although the terms for the eigenvalues,

eigenvectors and determinants become much less feasible to present.
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Appendix B

Empirical Example Data Analysis

## Data Preperation

# Load the ctsem package

library(ctsem)

# Data is available form https://osf.io/c6xt4/ #

setwd("./ESMdata")

#Load Data#

rawdata<-read.csv("ESMdata.csv",header=TRUE, stringsAsFactors = FALSE)

#Select only measruements which take place in the control and initial (no medication reduciton) phase

rawdata<-subset(rawdata,rawdata$phase==1|rawdata$phase==2)

#Select only the variables of interest

sel<-c("mood_down","phy_tired")

data<-rawdata[,(names(rawdata) %in% sel)]

# Standardise the selected variables

for(j in 1:dim(data)[2]){

data[,j]<-(data[,j]-mean(data[,j]))/sd(data[,j])

}
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# Create a time vector which represents hours since first measurement

# Required by ctsem function ctIntervalise

t1<-as.POSIXct(paste(rawdata$date,rawdata$resptime_s),

format="%d/%m/%y %H:%M:%S")

time<-as.numeric(difftime(t1,t1[1], units="hours"))

# Attach this time variable to the selected items

data$time=time

# Create an ID variable

data$id=rep(1,dim(data)[1])

# Rename pat_agitate = Y1, and event_import= Y2 for use with ctsem

colnames(data)=c("Y1","Y2","time","id")

# Get data in wide format for ctsem

datawide<-ctLongToWide(datalong=data,id="id",

time="time",manifestNames=c("Y1","Y2"))

# Create time-interval variable

datawide<-ctIntervalise(datawide=datawide,Tpoints=dim(data)[1],

n.manifest=2,manifestNames=c("Y1","Y2"))
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## Data analysis

# First specify the bivariate model, with 2 observed variables

model <- ctModel(n.manifest = 2, n.latent= 2, Tpoints = 286,

LAMBDA = diag(nrow=2),

MANIFESTMEANS = matrix(data=0, nrow=2, ncol=1),

MANIFESTVAR = matrix(data=0, nrow=2, ncol=2),

DRIFT = "auto",

CINT = matrix(data=0, nrow=2, ncol=1),

DIFFUSION = "auto",

TRAITVAR = NULL,

MANIFESTTRAITVAR = NULL,

startValues = NULL)

# Fit the model to the data using carefulFit to get initial values

fit <- ctFit(data= datawide, ctmodelobj = model, objective = "Kalman",

stationary = c("T0VAR", "T0MEANS"),

iterationSummary = T, carefulFit = T, showInits = F, asymptotes = F,

meanIntervals = F,

plotOptimization = F, nofit = F, discreteTime = F,

verbose = 0)

summary(fit)



50

Footnotes

1The variance-covariance matrix of the variables Σ is a function of both the

lagged parameters and the variance-covariance matrix of the innovations,

vec(Σ) = (I −Φ⊗Φ)−1vec(Ψ), where vec(.) denotes the operation of putting the

elements of an N ×N matrix into an NN × 1 column matrix (Kim & Nelson, 1999,

p.27)

2Readers should note that there are multiple different possible ways to

parameterize the CT stochastic process in integral form, and also multiple different

notations used (e.g., Oravecz et al., 2011; Voelkle et al., 2012).

3In general, there is no straightforward CT-VAR(1) representation of

DT-VAR(1) models with real, negative eigenvalues. However it may be possible to

specify more complex continuous-time models which do not exhibit positive

autoregression. Notably, Fisher (2001) demonstrates how a DT-AR(1) model with

negative autoregressive parameter can be modeled with the use of two

continuous-time (so-called) Ito processes.

4Similar functions can be used for deterministic systems (those without a

random innovation part), however in these cases the term initial value is more

typically used.
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Table 1

Parameter estimates from substantive example

Parameter Value Std. Error

a11 -0.995 0.250

a21 0.375 0.441

a12 0.573 0.595

a22 -2.416 1.132

γ11 1.734 0.612

γ21 -0.016 0.650

γ22 4.606 1.374
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Figure Captions

Figure 1. Impulse response function for the model in Equation 7 for four different

sets of impulses; red solid line = Do(t) and blue dashed line = Ti(t).

Figure (a). Do(0) = 1, T i(0) = 0

Figure (b). Do(0) = 0, T i(0) = 1

Figure (c). Do(0) = 1, T i(0) = 1

Figure (d). Do(0) = 1, T i(0) = −1

Figure 2. Vector field for Do(t) and Ti(t), including blue and red nullclines.

Figure 3. The elements of Φ(∆t) for the bivariate example (i.e., φ11(∆t), φ12(∆t),

φ21(∆t), φ22(∆t)) plotted for a range of values for ∆t.

Figure 4. Vector field for a stable spiral corresponding to a drift matrix with

negative real part complex eigenvalues.
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